COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30-3:45 Building: Morrill 2 Room: 222

Topic 7.0: Gradient Descent
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

- Recall:

$$
\operatorname{argmin}_{w} L(w, D)
$$

- Viewing $L(w, D)$ as a function, f, of just the weights (and a fixed data set):

$$
\operatorname{argmin}_{w} f(w)
$$

- Note that this is equivalent to maximizing a different function, where $g=-f$

$$
\operatorname{argmax}_{w} g(w)
$$

- We could also write x instead of w :

$$
\operatorname{argmin}_{x} f(x)
$$

- The function being optimized (minimized or maximized) is called the objective function (optimization terminology).
- In this case, our objective function is a loss function (machine learning terminology).
- Question: How do we find the input that minimizes a function?

Local Search Methods

- Start with some initial input, x_{0}
- Search for a nearby input, x_{1}, that decreases f :

$$
f\left(x_{1}\right)<f\left(x_{0}\right)
$$

- Repeat, finding a nearby input x_{i+1} that decreases f (for each iteration i :

$$
f\left(x_{i+1}\right)<f\left(x_{i}\right)
$$

- Stop when:
- You cannot find a new input that decreases f
- The decrease in f becomes very small
- The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point, x_{i}.

"Find a nearby point that decreases f "

- We will consider gradient-based optimizers.
- At any input/point x, we can query:
- $f(x)$: The value of the objective function at the point
- $\frac{d f(x)}{d x}$: The derivative of the objective function at the point
- This is the gradient, and is also written as $\nabla f(x)$

Question: Is a global minimum a local minimum?

Answer: Yes!

Global minimum: A location where the function achieves the lowest value (the argmin).

Local minimum: A location where all nearby (adjacent) points have higher values.

Question: How can we find a point x_{i+1} such that $f\left(x_{i+1}\right)<f\left(x_{i}\right)$? That is, a point that is "lower"? Idea: Move a small amount "downhill"

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease x_{i} to get x_{i+1}. Negative slope: Increase x_{i} to get x_{i+1}.

Gradient Descent

- Take a step of length α (a small positive constant) in the opposite direction of the slope:

$$
x_{i+1}=x_{i}-\alpha \times \text { slope }
$$

- Note: The slope is $\frac{d f(x)}{d x}$, so we can write:

$$
x_{i+1}=x_{i}-\alpha \frac{d f(x)}{d x} .
$$

- α is a hyperparameter called the step size or learning rate.

Gradient descent, $x_{0}=7, \alpha=0.001$ $f(x)=x^{4}-14 x^{3}+60 x^{2}-70 x$

Question: Why do the points get closer together when we use the same step size, α ?

Why do the points get closer together when

 we use the same step size, α ?$$
x_{i+1}=x_{i}-\alpha \frac{d f(x)}{d x}
$$

- As x_{i} approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
- If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.
- If the step length was always constant, it could forever over-shoot the (local) minimum, not making progress towards the (local) minimum.

Multidimensional Gradient Descent

- What if the function, f, takes many inputs?
- Our loss function takes the weight vector w.
- For now, consider a function $f(x, y)$, where x and y are two real numbers.

$$
f(x, y)=x^{2}+y^{2}
$$

Consider the point $(3,3)$

Question: How can we find a new point that is "downhill"?

Idea: Compute the slope along each axis!
x-slope: $\frac{\partial f(x, y)}{\partial x}$
y-slope: $\frac{\partial f(x, y)}{\partial y}$
The gradient is the concatenation of the slopes along each
dimension/axis:

$$
\nabla f(x)=\left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]
$$

The Gradient

Question: How can we find a new point that is "downhill"?

Idea: Compute the slope along each axis!
x-slope: $\frac{\partial f(x, y)}{\partial x}$
y-slope: $\frac{\partial f(x, y)}{\partial y}$
The gradient is the concatenation of the slopes along each
dimension/axis:

$$
\nabla f(x)=\left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]
$$

Note: The gradient is also called the "direction of steepest ascent". It indicates how to change each input to go up-hill as quickly as possible.

Gradient Descent: Move both x and y in the negative direction of their slopes. That is, move in the opposite direction of the gradient:

$$
\begin{aligned}
& x_{i+1}=x_{i}-\alpha \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x_{i}} \\
& y_{i+1}=y_{i}-\alpha \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y_{i}}
\end{aligned}
$$

OR
$\left(x_{i+1}, y_{i+1}\right)=\left(x_{i}, y_{i}\right)-\alpha \nabla f\left(x_{i}, y_{i}\right)$

Gradient Descent on $f(x, y)=x^{2}+y^{2}$
$\left(x_{0}, y_{0}\right)=(3,3), \alpha=0.7$
Gradient Descent on 3D Surface

Pseudocode: Gradient Descent on $f(x)$

- Hyperparameter: Step size α. Typically a small constant like $0.1,0.01,0.001, \ldots$
- Assumption: f is a function that takes a vector (or single real number) as input, and produces a single real number as output.
- Assumption: f is smooth (differentiable)

- Method:

- Select an arbitrary initial point, x_{0} (a vector).
- For each iteration i, set $x_{i+1}=x_{i}-\alpha \nabla f\left(x_{i}\right)$. Equivalently, for each element of x_{i} (indexed by j):

$$
x_{i+1, j}=x_{i, j}-\alpha \frac{\partial f\left(x_{i}\right)}{\partial x_{i, j}}
$$

- Stop when progress becomes slow or after some fixed amount of time.

Gradient Descent: Adaptive Step Sizes

- Tuning the step size, α, can be challenging.
- Adaptive step size methods measure properties of the function over time to adapt the step size automatically.
- Many methods (ADAGRAD, ADAM, etc.)
- Some change not only the length of the step, but also the direction of the step!
- Details beyond the scope of this course.

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

$$
\operatorname{argmin}_{w} L(w, D)
$$

- Initialize w_{0} arbitrarily.
- Iterate:

$$
w_{i+1} \leftarrow w_{i}-\alpha \frac{\partial L\left(w_{i}, D\right)}{\partial w_{\mathrm{i}}}
$$

- Equivalently, for each weight (indexed by j):

$$
w_{i+1, j} \leftarrow w_{i, j}-\alpha \frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}
$$

- To implement this, we need to know $\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}$

What is $\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}} ?$

$$
L\left(w_{i}, D\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right)^{2}
$$

$$
\begin{gathered}
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{\partial}{\partial w_{i, j}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right)_{2}^{2} \\
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{i, j}}\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right)^{d} \\
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right) \frac{\partial}{\partial w_{i, j}}\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right) \\
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{-1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right) \frac{\partial}{\partial w_{i, j}} \sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right) \\
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{-1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right)^{2} \phi_{j}\left(x_{i}\right)
\end{gathered}
$$

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

- For each weight (indexed by j):

$$
w_{i+1, j} \leftarrow w_{i, j}-\alpha \frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}
$$

- Where:

$$
\frac{\partial L\left(w_{i}, D\right)}{\partial w_{i, j}}=\frac{-1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right) \phi_{j}\left(x_{i}\right)
$$

- So, for each weight (indexed by j):

$$
w_{i+1, j} \leftarrow w_{i, j}-\alpha \frac{1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\sum_{j=1}^{d} w_{i, j} \phi_{j}\left(x_{i}\right)\right) \phi_{j}\left(x_{i}\right)
$$

Gradient Descent Loss, Polynomial Degree: 2)

Iteration $0 / 1000$, Loss: 8.4351	Iteration $16 / 1000$, Loss: 1.0097
Iteration $1 / 1000$, Loss: 6.8922	Iteration $17 / 1000$, Loss: 0.9680
Iteration $2 / 1000$, Loss: 5.6614	Iteration $18 / 1000$, Loss: 0.9347
Iteration $3 / 1000$, Loss: 4.6794	Iteration $19 / 1000$, Loss: 0.9081
Iteration $4 / 1000$, Loss: 3.8960	Iteration $20 / 1000$, Loss: 0.8868
Iteration $5 / 1000$, Loss: 3.2710	Iteration $21 / 1000$, Loss: 0.8698
Iteration $6 / 1000$, Loss: 2.7724	Iteration $22 / 1000$, Loss: 0.8562
Iteration $7 / 1000$, Loss: 2.3746	Iteration $23 / 1000$, Loss: 0.8453
Iteration $8 / 1000$, Loss: 2.0572	Iteration $24 / 1000$, Loss: 0.8366
Iteration $9 / 1000$, Loss: 1.8040	Iteration $997 / 1000$, Loss: 0.7177
Iteration $10 / 1000$, Loss: 1.6019	Iteration $11 / 1000$, Loss: 1.4407
Iteration $12 / 1000$, Loss: 1.3120	Iteration $998 / 1000$, Loss: 0.7177
Iteration $13 / 1000$, Loss: 1.2093	Iteration $999 / 1000$, Loss: 0.7176
Iteration $14 / 1000$, Loss: 1.1274	Iteration $15 / 1000$, Loss: 1.0619

Least Squares with Linear Parametric Model

- Question: Why was the final MSE so large (0.78)?
- Other methods achieved ~ 0.57
- Answer:
- Better weights likely exist!
- Gradient descent was making very slow progress at the end.
- Idea: Let's try using an adaptive step size method, ADAM.
Iteration $1 / 1000$, Loss: 7.0300
Iteration $2 / 1000$, Loss: 5.9808
Iteration $3 / 1000$, Loss: 5.2636
Iteration $4 / 1000$, Loss: 4.8402
Iteration $5 / 1000$, Loss: 4.6492
Iteration $6 / 1000$, Loss: 4.6073
Iteration $7 / 1000$, Loss: 4.6240
Iteration $8 / 1000$, Loss: 4.6272
Iteration $9 / 1000$, Loss: 4.5771
Iteration $10 / 1000$, Loss: 4.4633
Iteration $11 / 1000$, Loss: 4.2945
Iteration $12 / 1000$, Loss: 4.0891
Iteration $13 / 1000$, Loss: 3.8682
Iteration $14 / 1000$, Loss: 3.6514
Iteration $15 / 1000$, Loss: 3.4540
Iteration $16 / 1000$, Loss: 3.2858
Iteration $17 / 1000$, Loss: 3.1506
Iteration $18 / 1000$, Loss: 3.0462
Iteration $19 / 1000$, Loss: 2.9662
Iteration $20 / 1000$, Loss: 2.9017
Iteration $21 / 1000$, Loss: 2.8433
Iteration $22 / 1000$, Loss: 2.7831
Iteration $23 / 1000$, Loss: 2.7164
Iteration $24 / 1000$, Loss: 2.6418
Iteration $25 / 1000$, Loss: 2.5612
It
Iteration $997 / 1000$, Loss: 0.5650
Iteration $998 / 1000$, Loss: 0.5650
Iteration $999 / 1000$, Loss: 0.5650
Iteration $1000 / 1000$, Loss: 0.5649

ADAM Optimization Loss, Polynomial Degree: 2)

Much better!
Test MSE: 0.5791
Standard Error of MSE: 0.0073

End

