

COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 7.0: Gradient Descent

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

• Recall:

 $\operatorname{argmin}_{w} L(w, D)$

- Viewing L(w, D) as a function, f, of just the weights (and a fixed data set): argmin_w f(w)
- Note that this is equivalent to maximizing a different function, where g = -f argmax_w g(w)
- We could also write *x* instead of *w*:

 $\operatorname{argmin}_{x} f(x)$

- The function being optimized (minimized or maximized) is called the **objective function** (optimization terminology).
 - In this case, our objective function is a **loss function** (machine learning terminology).
- **Question**: How do we find the input that minimizes a function?

Local Search Methods

- Start with some initial input, x_0
- Search for a nearby input, x_1 , that decreases f: $f(x_1) < f(x_0)$
- Repeat, finding a nearby input x_{i+1} that decreases f (for each iteration i):

$$f(x_{i+1}) < f(x_i)$$

- Stop when:
 - You cannot find a new input that decreases f
 - The decrease in f becomes very small
 - The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point, x_i .

"Find a nearby point that decreases f"

- We will consider gradient-based optimizers.
- At any input/point *x*, we can query:
 - f(x): The value of the objective function at the point
 - $\frac{df(x)}{dx}$: The derivative of the objective function at the point
 - This is the **gradient**, and is also written as $\nabla f(x)$

Question: Is a global minimum a local minimum? **Answer:** Yes!

Global minimum: A location where the function achieves the lowest value (the argmin).

Local minimum: A location where all nearby (adjacent) points have higher values.

Question: How can we find a point x_{i+1} such that $f(x_{i+1}) < f(x_i)$? That is, a point that is "lower"? **Idea**: Move a small amount "downhill"

Notice: The slope of the function tells us which direction is uphill / downhill. **Positive slope:** Decrease x_i to get x_{i+1} . **Negative slope:** Increase x_i to get x_{i+1} .

Gradient Descent

• Take a step of length α (a small positive constant) in the opposite direction of the slope:

$$x_{i+1} = x_i - \alpha \times \text{slope.}$$

- Note: The slope is $\frac{df(x)}{dx}$, so we can write: $x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$.
 - α is a hyperparameter called the step size or learning rate.

Gradient descent, $x_0 = 7$, $\alpha = 0.001$ $f(x) = x^4 - 14x^3 + 60x^2 - 70x$

Question: Why do the points get closer together when we use the same step size, α ?

Why do the points get closer together when we use the same step size, α ?

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$

- As x_i approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
 - If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.
- If the step length was always constant, it could forever over-shoot the (local) minimum, not making progress towards the (local) minimum.

Multidimensional Gradient Descent

- What if the function, *f*, takes many inputs?
 - Our loss function takes the weight vector w.
 - For now, consider a function f(x, y), where x and y are two real numbers.

 $f(x,y) = x^2 + y^2$

Consider the point (3,3)

Question: How can we find a new point that is "downhill"?

Idea: Compute the slope along each axis!

x-slope: $\frac{\partial f(x,y)}{\partial x}$ y-slope: $\frac{\partial f(x,y)}{\partial y}$

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]$$

The Gradient

Question: How can we find a new point that is "downhill"?

Idea: Compute the slope along each axis!

x-slope: $\frac{\partial f(x,y)}{\partial x}$ y-slope: $\frac{\partial f(x,y)}{\partial y}$

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]$$

Note: The gradient is also called the "direction of steepest ascent". It indicates how to change each input to go up-hill as quickly as possible.

Gradient Descent: Move both *x* and *y* in the negative direction of their slopes. That is, move in the opposite direction of the gradient:

$$\begin{aligned} x_{i+1} &= x_i - \alpha \frac{\partial f(x_i, y_i)}{\partial x_i} \\ y_{i+1} &= y_i - \alpha \frac{\partial f(x_i, y_i)}{\partial y_i} \\ \text{OR} \\ (x_{i+1}, y_{i+1}) &= (x_i, y_i) - \alpha \nabla f(x_i, y_i) \end{aligned}$$

Gradient Descent on $f(x, y) = x^2 + y^2$ (x_0, y_0) = (3,3), $\alpha = 0.7$

Gradient Descent on 3D Surface

Pseudocode: Gradient Descent on f(x)

- Hyperparameter: Step size α . Typically a small constant like 0.1, 0.01, 0.001, ...
- Assumption: *f* is a function that takes a vector (or single real number) as input, and produces a single real number as output.
- **Assumption**: *f* is smooth (differentiable)
- Method:
 - Select an arbitrary initial point, x_0 (a vector).
 - For each iteration *i*, set $x_{i+1} = x_i \alpha \nabla f(x_i)$. Equivalently, for each element of x_i (indexed by *j*):

$$x_{i+1,j} = x_{i,j} - \alpha \frac{\partial f(x_i)}{\partial x_{i,j}}$$

• Stop when progress becomes slow or after some fixed amount of time.

Gradient Descent: Adaptive Step Sizes

- Tuning the step size, α , can be challenging.
- Adaptive step size methods measure properties of the function over time to adapt the step size automatically.
 - Many methods (ADAGRAD, ADAM, etc.)
 - Some change not only the length of the step, but also the *direction* of the step!
 - Details beyond the scope of this course.

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

 $\operatorname{argmin}_{w} L(w, D)$

- Initialize w_0 arbitrarily.
- Iterate:

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L(w_i, D)}{\partial w_i}$$

• Equivalently, for each weight (indexed by *j*): $\partial L(w_i, D)$

$$W_{i+1,j} \leftarrow W_{i,j} - \alpha \frac{\partial (w_{i,j})}{\partial W_{i,j}}$$

• To implement this, we need to know $\frac{\partial L(w_i,D)}{\partial w_{i,j}}$

What is
$$\frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

$$L(w_i, D) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right)^2$$

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{\partial}{\partial w_{i,j}} \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right)^2$$

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_{i,j}} \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right)^2$$

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i=1}^n 2 \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right) \frac{\partial}{\partial w_{i,j}} \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right)$$

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i=1}^n 2 \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right) \frac{\partial}{\partial w_{i,j}} \sum_{j=1}^d w_{i,j} \phi_j(x_i)$$

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i=1}^n 2 \left(y_i - \sum_{j=1}^d w_{i,j} \phi_j(x_i) \right) \frac{\partial}{\partial w_{i,j}} \int_{j=1}^d w_{i,j} \phi_j(x_i)$$

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

• For each weight (indexed by *j*):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

• Where:

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i=1}^n 2\left(y_i - \sum_{j=1}^d w_{i,j}\phi_j(x_i)\right)\phi_j(x_i)$$

• So, for each weight (indexed by *j*):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{1}{n} \sum_{i=1}^{n} 2\left(y_i - \sum_{j=1}^{d} w_{i,j}\phi_j(x_i)\right) \phi_j(x_i)$$

Gradient Descent Loss, Polynomial Degree: 2)

Iteration 0/1000, Loss: 8.4351 Iteration 1/1000, Loss: 6.8922 Iteration 2/1000, Loss: 5.6614 Iteration 3/1000, Loss: 4.6794 Iteration 4/1000, Loss: 3.8960 Iteration 5/1000, Loss: 3.2710 Iteration 6/1000, Loss: 2.7724 Iteration 7/1000, Loss: 2.3746 Iteration 8/1000, Loss: 2.0572 Iteration 9/1000, Loss: 1.8040 Iteration 10/1000, Loss: 1.6019 Iteration 11/1000, Loss: 1.4407 Iteration 12/1000, Loss: 1.3120 Iteration 13/1000, Loss: 1.2093 Iteration 14/1000, Loss: 1.1274 Iteration 15/1000, Loss: 1.0619

Iteration	16/1000,	Loss:	1.0097
Iteration	17/1000,	Loss:	0.9680
Iteration	18/1000,	Loss:	0.9347
Iteration	19/1000,	Loss:	0.9081
Iteration	20/1000,	Loss:	0.8868
Iteration	21/1000,	Loss:	0.8698
Iteration	22/1000,	Loss:	0.8562
Iteration	23/1000,	Loss:	0.8453
Iteration	24/1000,	Loss:	0.8366
• • •			
Iteration	997/1000,	Loss	. 0.7177
Iteration	998/1000,	Loss	0.7177
Iteration	999/1000,	Loss	0.7176

Iteration 1000/1000, Loss: 0.7176

Not very good!

Test MSE: 0.7856 Standard Error of MSE: 0.0084

Least Squares with Linear Parametric Model

- **Question**: Why was the final MSE so large (0.78)?
 - Other methods achieved ~ 0.57

• Answer:

- Better weights likely exist!
- Gradient descent was making very slow progress at the end.
- Idea: Let's try using an adaptive step size method, ADAM.

Iteration	1/1000, Loss: 7.0300
Iteration	2/1000, Loss: 5.9808
Iteration	3/1000, Loss: 5.2636
Iteration	4/1000, Loss: 4.8402
Iteration	5/1000, Loss: 4.6492
Iteration	6/1000, Loss: 4.6073
Iteration	7/1000, Loss: 4.6240
Iteration	8/1000, Loss: 4.6272
Iteration	9/1000, Loss: 4.5771
Iteration	10/1000, Loss: 4.4633
Iteration	11/1000, Loss: 4.2945
Iteration	12/1000, Loss: 4.0891
Iteration	13/1000, Loss: 3.8682
Iteration	14/1000, Loss: 3.6514
Iteration	15/1000, Loss: 3.4540
Iteration	16/1000, Loss: 3.2858
Iteration	17/1000, Loss: 3.1506
Iteration	18/1000, Loss: 3.0462
Iteration	19/1000, Loss: 2.9662
Iteration	20/1000, Loss: 2.9017
Iteration	21/1000, Loss: 2.8433
Iteration	22/1000, Loss: 2.7831
Iteration	23/1000, Loss: 2.7164
Iteration	24/1000, Loss: 2.6418
Iteration	25/1000, Loss: 2.5612
Iteration	997/1000, Loss: 0.5650
Iteration	998/1000, Loss: 0.5650
Iteration	999/1000, Loss: 0.5650
Iteration	1000/1000, Loss: 0.5649

ADAM Optimization Loss, Polynomial Degree: 2)

Test MSE: 0.5791 Standard Error of MSE: 0.0073

End

