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Optimization Perspective
• Recall:

argmin𝑤𝑤 𝐿𝐿 𝑤𝑤,𝐷𝐷
• Viewing 𝐿𝐿(𝑤𝑤,𝐷𝐷) as a function, 𝑓𝑓, of just the weights (and a fixed data set):

argmin𝑤𝑤 𝑓𝑓 𝑤𝑤
• Note that this is equivalent to maximizing a different function, where 𝑔𝑔 = −𝑓𝑓

argmax𝑤𝑤 𝑔𝑔 𝑤𝑤
• We could also write 𝑥𝑥 instead of 𝑤𝑤:

argmin𝑥𝑥 𝑓𝑓 𝑥𝑥
• The function being optimized (minimized or maximized) is called the 

objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?



Local Search Methods

• Start with some initial input, 𝑥𝑥0
• Search for a nearby input, 𝑥𝑥1, that decreases 𝑓𝑓:

𝑓𝑓 𝑥𝑥1 < 𝑓𝑓 𝑥𝑥0
• Repeat, finding a nearby input 𝑥𝑥𝑖𝑖+1 that decreases 𝑓𝑓 (for each 

iteration 𝑖𝑖):
𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓𝑓
• The decrease in 𝑓𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally 
around some current point, 𝑥𝑥𝑖𝑖.



“Find a nearby point that decreases 𝑓𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥𝑥, we can query:

• 𝑓𝑓 𝑥𝑥 : The value of the objective function at the point
• 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑥𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓𝑓(𝑥𝑥)



Local minimum: A location where all nearby 
(adjacent) points have higher values.

Global minimum: A location where the function 
achieves the lowest value (the argmin). 

Question: Is a global minimum a local minimum?
Answer: Yes!



𝑥𝑥𝑖𝑖 = 7

Question: How can we find a point 𝑥𝑥𝑖𝑖+1 such that 𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”



Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1. Negative slope: Increase 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1.



Gradient Descent

• Take a step of length 𝛼𝛼 (a small positive constant) in the opposite 
direction of the slope:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼 × slope.

• Note: The slope is 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, so we can write:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

.

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.



Gradient descent, 𝑥𝑥0 = 7, 𝛼𝛼 = 0.001
𝑓𝑓 𝑥𝑥 = 𝑥𝑥4 − 14𝑥𝑥3 + 60𝑥𝑥2 − 70𝑥𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼𝛼?



Why do the points get closer together when 
we use the same step size, 𝛼𝛼?

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

• As 𝑥𝑥𝑖𝑖 approaches a local optimum, the slope goes to zero.
• This allows for “convergence” to a local optimum.
• Gradient descent can still overshoot the (local) minimum.
• If the step size is small enough (or decayed appropriately over time), 

gradient descent is guaranteed to converge to a local minimum.
• If it overshoots a minimum by a small amount, it will reverse direction and move 

back towards the minimum.
• If the step length was always constant, it could forever over-shoot the 

(local) minimum, not making progress towards the (local) minimum.



Multidimensional Gradient Descent

• What if the function, 𝑓𝑓, takes many inputs?
• Our loss function takes the weight vector 𝑤𝑤.
• For now, consider a function 𝑓𝑓(𝑥𝑥,𝑦𝑦), where 𝑥𝑥 and 𝑦𝑦 are two real numbers.



𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 𝑦𝑦2



Consider the point (3,3)
Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥𝑥-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥

𝑦𝑦-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦



The Gradient

Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥𝑥-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥

𝑦𝑦-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

Note: The gradient is also called 
the “direction of steepest 
ascent”. It indicates how to 
change each input to go up-hill as 
quickly as possible.

Gradient Descent: Move both 𝑥𝑥 
and 𝑦𝑦 in the negative direction of 
their slopes. That is, move in the 
opposite direction of the gradient:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 − 𝛼𝛼

𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

OR
𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 − 𝛼𝛼∇𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)



Gradient Descent on 𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 𝑦𝑦2
𝑥𝑥0,𝑦𝑦0 = (3,3), 𝛼𝛼 = 0.7



Pseudocode: Gradient Descent on 𝑓𝑓(𝑥𝑥)
• Hyperparameter: Step size 𝛼𝛼. Typically a small constant like 

0.1, 0.01, 0.001, …
• Assumption: 𝑓𝑓 is a function that takes a vector (or single real number) 

as input, and produces a single real number as output.
• Assumption: 𝑓𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥𝑥0 (a vector).
• For each iteration 𝑖𝑖, set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑖𝑖 . Equivalently, for each element of 𝑥𝑥𝑖𝑖

(indexed by 𝑗𝑗):

𝑥𝑥𝑖𝑖+1,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

• Stop when progress becomes slow or after some fixed amount of time.



Gradient Descent: Adaptive Step Sizes

• Tuning the step size, 𝛼𝛼, can be challenging.
• Adaptive step size methods measure properties of the function 

over time to adapt the step size automatically.
• Many methods (ADAGRAD, ADAM, etc.)
• Some change not only the length of the step, but also the direction of the 

step!
• Details beyond the scope of this course.



Gradient Descent for Minimizing Sample MSE 
(Linear Parametric Model)

argmin𝑤𝑤 𝐿𝐿 𝑤𝑤,𝐷𝐷
• Initialize 𝑤𝑤0 arbitrarily.
• Iterate:

𝑤𝑤𝑖𝑖+1 ← 𝑤𝑤𝑖𝑖 − 𝛼𝛼
𝜕𝜕𝐿𝐿(𝑤𝑤𝑖𝑖 ,𝐷𝐷)

𝜕𝜕𝑤𝑤i
• Equivalently, for each weight (indexed by 𝑗𝑗):

𝑤𝑤𝑖𝑖+1,𝑗𝑗 ← 𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝐿𝐿(𝑤𝑤𝑖𝑖 ,𝐷𝐷)
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

• To implement this, we need to know 𝜕𝜕𝜕𝜕(𝑤𝑤𝑖𝑖,𝐷𝐷)
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗



What is 𝜕𝜕𝜕𝜕(𝑤𝑤𝑖𝑖,𝐷𝐷)
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

? 𝐿𝐿 𝑤𝑤𝑖𝑖 ,𝐷𝐷 =
1
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𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑖𝑖,𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖

2

𝜕𝜕𝐿𝐿 𝑤𝑤𝑖𝑖 ,𝐷𝐷
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

=
𝜕𝜕
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𝑤𝑤𝑖𝑖,𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖

2

𝜕𝜕𝐿𝐿 𝑤𝑤𝑖𝑖 ,𝐷𝐷
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗
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𝜕𝜕
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𝑦𝑦𝑖𝑖 −�
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2
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𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

=
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Gradient Descent for Minimizing Sample MSE 
(Linear Parametric Model)
• For each weight (indexed by 𝑗𝑗):

𝑤𝑤𝑖𝑖+1,𝑗𝑗 ← 𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝐿𝐿(𝑤𝑤𝑖𝑖 ,𝐷𝐷)
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

• Where:
𝜕𝜕𝐿𝐿 𝑤𝑤𝑖𝑖 ,𝐷𝐷
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

=
−1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

2 𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑖𝑖,𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖

• So, for each weight (indexed by 𝑗𝑗):

𝑤𝑤𝑖𝑖+1,𝑗𝑗 ← 𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛼𝛼
1
𝑛𝑛
�
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𝑛𝑛

2 𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑖𝑖,𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖





Iteration 0/1000, Loss: 8.4351 
Iteration 1/1000, Loss: 6.8922
Iteration 2/1000, Loss: 5.6614 
Iteration 3/1000, Loss: 4.6794 
Iteration 4/1000, Loss: 3.8960 
Iteration 5/1000, Loss: 3.2710
Iteration 6/1000, Loss: 2.7724 
Iteration 7/1000, Loss: 2.3746 
Iteration 8/1000, Loss: 2.0572 
Iteration 9/1000, Loss: 1.8040 
Iteration 10/1000, Loss: 1.6019 
Iteration 11/1000, Loss: 1.4407 
Iteration 12/1000, Loss: 1.3120 
Iteration 13/1000, Loss: 1.2093 
Iteration 14/1000, Loss: 1.1274
Iteration 15/1000, Loss: 1.0619 

Iteration 16/1000, Loss: 1.0097 
Iteration 17/1000, Loss: 0.9680 
Iteration 18/1000, Loss: 0.9347 
Iteration 19/1000, Loss: 0.9081 
Iteration 20/1000, Loss: 0.8868 
Iteration 21/1000, Loss: 0.8698 
Iteration 22/1000, Loss: 0.8562 
Iteration 23/1000, Loss: 0.8453 
Iteration 24/1000, Loss: 0.8366
...
Iteration 997/1000, Loss: 0.7177 
Iteration 998/1000, Loss: 0.7177 
Iteration 999/1000, Loss: 0.7176 
Iteration 1000/1000, Loss: 0.7176

Test MSE: 0.7856 Standard 
Error of MSE: 0.0084

Not very good!



Least Squares with Linear Parametric Model

• Question: Why was the final MSE so large (0.78)?
• Other methods achieved ~0.57

• Answer:
• Better weights likely exist!
• Gradient descent was making very slow progress at the end.

• Idea: Let’s try using an adaptive step size method, ADAM.



Test MSE: 0.5791 
Standard Error of MSE: 0.0073

Much better!



End
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